Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21311, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-38042901

RESUMEN

Wildlife monitoring in tropical rainforests poses additional challenges due to species often being elusive, cryptic, faintly colored, and preferring concealable, or difficult to access habitats. Unmanned aerial vehicles (UAVs) prove promising for wildlife surveys in different ecosystems in tropical forests and can be crucial in conserving inaccessible biodiverse areas and their associated species. Traditional surveys that involve infiltrating animal habitats could adversely affect the habits and behavior of elusive and cryptic species in response to human presence. Moreover, collecting data through traditional surveys to simultaneously estimate the abundance and demographic rates of communities of species is often prohibitively time-intensive and expensive. This study assesses the scope of drones to non-invasively access the Bukit Tigapuluh Landscape (BTL) in Riau-Jambi, Indonesia, and detect individual elephants of interest. A rotary-wing quadcopter with a vision-based sensor was tested to estimate the elephant population size and age structure. We developed hierarchical modeling and deep learning CNN to estimate elephant abundance and age structure. Drones successfully observed 96 distinct individuals at 8 locations out of 11 sampling areas. We obtained an estimate of the elephant population of 151 individuals (95% CI [124, 179]) within the study area and predicted more adult animals than subadults and juvenile individuals in the population. Our calculations may serve as a vital spark for innovation for future UAV survey designs in large areas with complex topographies while reducing operational effort.


Asunto(s)
Ecosistema , Elefantes , Animales , Humanos , Dispositivos Aéreos No Tripulados , Bosques , Animales Salvajes
2.
PLoS One ; 14(5): e0216129, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31042745

RESUMEN

Generalized linear latent variable models (GLLVM) are popular tools for modeling multivariate, correlated responses. Such data are often encountered, for instance, in ecological studies, where presence-absences, counts, or biomass of interacting species are collected from a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of computationally efficient estimation methods. For likelihood based estimation, several closed form approximations for the marginal likelihood of GLLVMs have been proposed, but their efficient implementations have been lacking in the literature. To fill this gap, we show in this paper how to obtain computationally convenient estimation algorithms based on a combination of either the Laplace approximation method or variational approximation method, and automatic optimization techniques implemented in R software. An extensive set of simulation studies is used to assess the performances of different methods, from which it is shown that the variational approximation method used in conjunction with automatic optimization offers a powerful tool for estimation.


Asunto(s)
Modelos Lineales , Análisis Multivariante , Algoritmos , Simulación por Computador , Interpretación Estadística de Datos , Funciones de Verosimilitud , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...